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Table 3. Relative volumes of Li and Na Salts at 25 degree C 

Pressure 
kilobars LiF LiCI LiBr 

5 
10 0·970 0·964 
15 0·979 0·957 0·947 
20 0·972 0·944 0·932 
25 0·965 0·933 0·919 
30 0·959 0·922 0·906 
35 0·953 0·911 0·894 
40 0·947 0·901 0·883 
45 0·942 0·892 0·872 
50 0·936 0·883 0·862 
60 0·926 0·867 0·844 
70 0·916 0·852 0·827 
80 0·906 0·838 0·812 
90 0·898 0·825 0·798 

100 0·889 0·813 0·785 
120 0·874 0·791 0·761 
140 0·859 0·772 0·740 
160 0·846 0·754 0·772 
180 0·834 0·738 0·705 
200 0·823 0·724 0·690 
220 0·812 0·711 0·676 

the Christian[4] data are also used. A revised 
fit for LiI is not shown in Table 1 because of a 
lack of sonic data. 

The calculated isotherms for these salts are 
shown in Table 1 up to pressures of 200 kbar. 
They are now in reasonable agreement with 
the 45 kbar static measurements [1]. However, 
for a number of these materials (LiCI, LiI, KI , 
RbCI, RbBr, RbI), the number of shock points 
is small (~4). For a more detailed data com­
parison such as has been carried out on NaCI 
[5] more shock data in this pressure range is 
desirable. 
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Formation energies of Schottky and 
Frenkel defects in thallium halides 

(Received 31 May 1972) 

UNLIKE in alkali h~lides where only Schottky 
defects are present, there is some speculation 
regarding the type of intrinsic defects in 
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thallium halides [1-4]. We have calculated 
the formation energies of Schottky as well as 
Frenkel defects in thallium halides, by 
employing a procedure analogous to that of 
Tosi and Doyama[5] in order to throw light 
on the nature of defects in these solids. 

As in the quasi-continuum model of Mott 
and Littleton [6], we divide the crystal into 
two regions, region I containing the defect 
and the nearest neighbour ions (referred to by 
suffix d and k respectively) and region II, 
describing the rest of the lattice (denoted by I). 
We express the energy of a given defect 
configuration relative to the perfect crystal 

Here Zd is the effective charge and Vd is the 
Madelung potential at the defect site; 1;j is the 
position vector from .the site j to the site i in 
the rigid lattice; cPjj is the short range inter­
action energy of the two ions in the defect 
crystal and (f)di is the shortrange interaction 
energy of the ith ion and the ion replaced by 
the defect d. The displacement dipole and the 
displacement + electronic dipole of a positive 
and negative far ion are denoted by ± M' zdi1d/ 
tli and M':±zatld/tli; in evaluating M' and 
M':± TKS polarizabilities [10] have been used. 
The total relaxation energy can now be com­
puted from, 

-Hn~M~ + nll_M' _)} +t L' [CPkk' (rkk') -CPkk' (tkk') ] 
kk' 

as the sum of the energy required to create 
the defects in the rigid lattice and the relaxa­
tion energy. The latter is minimized with 
respect to all the relaxation parameters using 
the steepest descent method of Rosenbrock 
[7]. A concise form of the mathematical 
algorithm used in the present calculations is 
given below. 

The rigid lattice energy change in creating 
the defects is written as, 

(2) 

Here, the terms due to i = j are excluded from 
the primed sums, g and m are the displace­
ments and moments of Region I ions, fjj = 

tu + gi - gj, Sjj = tu - gj, a is the electronic 
polarizability while n: and n~ are the lattice 
summations [8, 9] for the long-=-range polariza­
tion potentials and fields (see opposite page). 
In equation (2) the relaxations of the far ions 
are approximated to ion displacement dipoles; 
thus, fkl = tkl+ gk- (±M'Zdild/tfd). The terms 

(1) 


